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Abstract

This paper fi_rmulates the general methodology for

estimating the bias error distribution of a device in a
measuring domain from ]ess accurate measurcmenls when
a minimal number of standard values (typically two

values) are available. A new perspective is that the bias
error distribution can be found as a solution of an intrinsic

functional equation in a domain. Based on this theory, the

scaling- and translation-based methods for determining the
bias error distribution are developed. These methods are

virtually applicable to any device as long as the bias error
distribution of the device can be sufficiently described by a

power series (a polynomial) or a Fourier series in a
domain. These methods have been validated through

computational simulations and laboratory calibration

experiments for a number of different devices.

1. Introduction

The measurement of an instrument always has error
defined as the difference between the measured value and

the true value. The total error is the sum of the bias error
and the random error. Most books and articles on

uncertainty analysis have studied in detail statistical
estimates of the random error [1,2]. However, the bias

error, which is the fixed, systematic component of the total
error, is not sufficiently discussed because it is often
assumed that all bias errors have been eliminated by

calibration. Indeed, the bias error can be determined by

comparison with a standard having accuracy much better
than the device being tested. The standard device is
ultimately traceable to a national or international standard

laboratory. If the standard values over the whole range Of
measurements are known, the determination of the bias

error distribution of an instrument is extremely trivial.

Unfortunately, it is not always possible to have a standard
device available for calibration. Also, the standard device

itself has limited accuracy. Finley [3] proposed a unique

idea fi_r extracting the absolute bias error of an angular
measurement device by comparing it with another
instrument of comparable quality. The differences in

readings from the two devices are obtained with two

different initial angles of the devices. Next, a Fourier

analysis of the two sets of the differences recovered the
bias errors for both devices. Finley's method was further

discussed by Snow [4] from the standpoint of the Fourier
transform. Finley's work shows that in angular
measurements the absolute bias error distributions can be

obtained by using two less accurate devices. Naturally, a

legitimate question is whether there is a general method for
estimating the bias error distribution of a device. This

question will be answered in this paper.
This paper formulates the general methodology for

estimating the absolute bias error distribution of a device
in a measuring domain when only a few standard values

(typically two values) are known. In the proposed
approach, the bias error distribution is sought as a solution

of an intrinsic functional equation in a measuring domain.
The scaling-based method and translation-based method

are developed, in which the analytical solutions to the
functional equations for the bias error distributions are,

respectively, expressed as a power series and a Fourier
series in a given domain. The scaling-based method is

effective for a large class of the bias error distributions that
can be sufficiently described by a power series or a

polynomial. The approximate scaling-based method for
practical implementation is developed, requiring two
standard values to determine the complete bias error

distribution. An empirical rule for selecting an appropriate

order of a polynomial is suggested to achieve the good
accuracy of calculating the bias error distribution. Effects
of the random measurement perturbations on calculation of

the bias error distribution are studied through Monte Carlo
simulations. In contrast to the scaling-based method, the
translation-based method has relatively limited

applications, but it is particularly useful for angular
measurements since the bias error distribution can be

naturally expressed as a Fourier series. The scaling- and
translation-based tnelhods for simultaneously estimating
the bias error distributions of two devices are also

described. Computational simulations and laboratory
experiments for calibrating a number of different devices
are conducted to validate the proposed methodology to
recover the bias error distribution.
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2. Bias Error and Intrinsic Functional Equation

Let re(x) bc the measurement value of a 'true'

physical quantity x by a device having a deterministic bias

error g(x) then,



m(x) = x+e(x). (1)

The symbol re(x) can be interpreted as a measurement

operator of the variable x. In order to obtain an additional

independent equation for e(x), a quantity ctx+fl that is

a linear transformation of x is measured by the same
device, where tr is a scaling constant and fl is a

translation constant. The measurement value of cex + fl is

expressed as

m( ax + fl )=ctx + fl + e( a'x + fl ) . (2)

Eliminating x in Eqs. (I) and (2), one obtains a functional

equation for ¢(x)

6¢ x) = e(x)-a-le(ax + fl ), (3)

where the difference 6(x) is a known function that can be

measured by the device for given a and fl, i.e.,

6¢ x )= m( x )-o_-_ ( m( a'x + fl )- fl ). (4)

Eq. (3) is an intrinsic functional equation governing the

bias error distribution ,9(x). Because no assumption has

been made, this functional equation for the bias error

distribution is virtually applicable to any measurement
instrument. Although more complicated functional

equations can be similarly constructed as a model of the
bias error, Eq. (3) enjoys its simplicity without loss of
gcncrality. Now, the fundamental problem is to find a

solution to Eq. (3) for c(x) in a given domain

D=[xl,x2] and a class of admissible functions

(including domains and ranges). The discussions on
functional equations from a mathematical perspective can

be found in refcrcnccs 5 and 6. Although a general
solution to Eq. (3) in the power-series-form can bc found,

two special but very useful cases are considered hcre,
which are a pure scaling ease (a _: 0.1 and fl = 0 ) and a

pure translation case (a= 1 and fl :_0). Not only the

special cases lead to simpler solutions, but also they are

more easily implemented in the real measurements.
The Scaling-Based Method

In the pure scaling case (c_0,1 and fl=0), the

intrinsic functional equation is

6( x ) = e( x )-a-_ e( ctx ) , (5)

whcrc 6(x) is a known function

6( x ) = re(x)- a-%( ax ). (6)

Assume that the functions 6(x) and e(x) can bc

cxpandcd as a power series in a given domain

D= [ x I,x 2 ], that is,

N N

x)= Z d,,x" and g( x)= Z e"x'i "6( (7)

For a given set of measurement data points of 6(x), the

coefficients d,, can be obtained using the least-squares

method (see Appendix). Substituting Eq. (7) into Eq. (5),

one can determine all the coefficients e,, except for n = 1,

e,_ =d,/(l-od '-I ). (n=O,2,3...N) (8)

For n =1, to determine the remaining unknown coefficient

e / , the measurement value re(x) is re-written as
N

= _e,,x" +( I+ e I )x. (9)hi(X)
n

ll_O

tlg]

Integrating Eq. (9) over a given domain

D_. = [xl.,,x2. _ ] c D = [xl,x 2 ], onc obtains an

expression for the coefficient e/
N

y_,ej - , - _ [re(x)- e,,x" ]dr- 1, (10)

where a condition _f2 "_- 1., _ x__ must hold. We often assign

[XLs,X2_]=[Xt,X2] if x2:_xff. Thus, all the

coefficients e,, arc obtaincd and the bias error distribution

c(x) is, in principle, determined. Naturally, the above

method is called as the scaling-based method for

recovering the bias error.
An underlying assumption for the scaling-based

method is that thc functions 6(k) and e(x) can be

sufficiently expressed as a power series or a polynomial in

D= [xl,x: ]. To illustrate this method, wc consider a

hypothetical bias error distribution of a device in

D = IL/OI,

_( x ) = 0.3-O.Ol_-xx +O.O3x-4× 10 -4 x 2 - IO -4 x 3
(ll)

-6×10-6 x 5 +0.5exp(-O.3x 2 )

As shown in Fig. 1, the bias error distribution computed by

using the scaling-based method for a= 2 and N = 13 is in
excellent agreement with one given by Eq. (11). The

differencc between the given and computed bias errors is
also plotted in Fig. I.

In an ideal case, it seems likely to recover the bias
error distribution even without using any standard value.

However, one may notice that both 6(x) and Hx) in Eq.

(7) are expanded as a function of the true variable x which

is not exactly known a priori. It will be pointed out later
that the approximate scaling-based method for actual
measurements still needs two standard values to recover

the bias error distribution in thc domain D = [x I,x 2 ].

The Translation-Based Method

In the purc translation case (a= t and fl :_0),

instead of using a power series, a Fourier series is

employed because of the shift property of a complex
exponential function. Since a Fourier series has the
periodic property, the variable x and the translation



constantfl in Eqs. (3) and (4) are replaced by the angular

variables 0 and 00 , respectively. In a domain

D o =[0,2zr], the intrinsic functional equation for the

bias error distribution c(0) is

6(0)= £(0)-c(0+0 o), (12)

where 6( 0 ) is a known function for a given 00

8(0)= m( O )-m( O +O o)+0 o . (13)

Assume that the functions 6(0) and e(0) in

D o = [0,2zrl can be expanded as a Fourier series

N

,_(o ) = _ / al,__cos(,, o _+ I,_,__st,,( ,,o )1,
It=]

N

e( O ) = ao_e _- 2 + E / a_,eJ cos( nO ) + b_,e _ sin( n O )] ./(14)
It=]

The coefficients all ;_ and b_,6_ in 8(0) can be

determined using the least-squares method for a given set
of data points (see Appendix). For J_¢:01 a relation

between ( al, e_ , b_,e ' ) and ( al/_ , bl,5 ' ) ( n = 1, 2,... U ) is

derived by substituting Eq. (14) into Eq. (12), that is,

, (,,--,,2,3 )
where

(l-cos(nO o) -sin(nO o ) )
G I I

[sil¢,Oo ) l-cos(nO o ))"

Because the determinant det(G)=2ll-cos(nO v)]

should not be zero for the existence of a unique solution,

the necessary conditions for a unique solution are

nO o _kx+x/2 (k=O,l,2,...) and n:x0. For n=0,

similar to the pure scaling case, the coefficient a_c; can be

determined by the following integral over D o = [0,2zr ]

a_oc _ x-if "_ O)= _ /m(

(16)N

- _ I a I,__co,,(,,o ) + b,7 ' st,,( ,,o )l/dO - 2x
n- I

Therefore, all the coefficients (al_ c), b_,eJ ) are known and

the bias error distribution ,£(0) is readily calculated. We

refer to this method as the translation-based method. Note

that the constant term in the Fourier series for 8"(0) in Eq.

([4) is zero. This is a restrictive assumption lot the

translation-based method. Another implicit assumption
embedded in Eq. (14) is that the bias error distribution

must be periodic.
As an example, consider a hypothetical bias error

,£(0) defined in D o =[O.2zr ].

e( 0 ) = O.08 + O.02 cos( 0 ) + O.03 cos( 20 )
(17)

- O.06 sin( 20 )+ O.04qtO sin( 40 )

Figure 2 shows a comparison between the given bias error
distribution (17) and the distribution recovered by using

the translation-based method (0 o = zr / 20 and N = 6 ).

Simulations indicate that the translation-based mcthod is

good for recovering the bias error distribution whose
behavior is dominated by trigonometric functions. The
Fourier series solution is particularly useful for angular

measurements in the domain D o = [O,2_r ]. Compared to

the scaling-based method, the translation-based method

has limited applications because of the implicit assumption

of periodicity 0(0) = 0(2.,-r). On the other hand, when the

periodicity condition O(O)=O(2_r) is imbedded in data,

the translation-based method does not explicit[), require

any standard value to recover the bias error distribution. In
contrast, the scaling-based method typically needs two
standard values in the ?eal measurements (see Section 3).

3. The Approximate Scaling-Based Method
In Section 2, we describe the scaling-based method for

recovering the bias error distribution as a solution of the
functional equation. However, the method in the ideal
condition cannot be directly applied to the real

measurements because the true variable x in Eq. (7) is not

known a priori. Therefore, an approximate approach is
developed, in which the true variable x is replaced by a

known approximate reference value x,,w,.. The

approximate reference value X_pp_ is often a measurement

value by another device with a comparable accuracy. Due

to the substi(ution of X,pp,_ for x, the scaling-based method

gives an approximate bias error distribution _'(x),,t,p, that

deviates from the true bias error distribution _'(x). The

deviation of _'(x),,t,i, ,. from c(x) can be reasonably

modeled by a linear function of X,,pp,.. Thus, this

approximate method requires two standard values to
determine the unknown coefficients in the linear function

of deviation for recovering the whole bias error
distribution.

Replacing the true variable x in Eq. (7) by a known

approximate reference variable x,,pp,, one obtains an

alternative formulation
N

(_( )" )appr : E dn( Xappr ) n

n=O

N

= _, e, ( x,pp_ )", (18)£( X ),q,p,"
J1=O

where the function 6(x),pp,. is an approximate form of

8(x) in Eq. (6), i.e.,

6( x ),q,w = m( x ) - a-l m( a x,q,w. ). 19)



Thecoefficientsd,, can bc obtained by using the least-

squares method and the cocfficients e,, are given by Eqs.

(8) and (10) in Section 2. Thcreforc, the approximate bias

error distribution e(x),ppr is determined.

Now, wc estimate thc difference between c(x) and

c( x ),q,l,,. . Assuming Xappr = x+ c'( x ) ' one knows

N

C( X )appr = Z e,, ( x,,m, r )"

,,=0 , (20)
N

= c(x)+__n e,,e'(x)x ''-1 +o(e' )
tl= ]

wherc e'(x) is the bias error of the approximate reference

value x,,et, r and o(e') is a higher-order small term of

e'(x). Bascd on the triangle inequality and the Cauchy-

Schwarz inequality, furthermore, one obtains the following

estimatc for the difference between t'(x) and c(x),pp,, in

the domain D= [ x i,x 2 ]

II c - E,,t,I,,. II/ II 8 I1

N [ .211-1 .2n-I -_1/2

("e'II/llsll) "'"o2,1 _,, ] , (21)
<_

,,=1 [ '2,_-1 + c

where c is a positive constant and lI, II is the L2-norm

X2
defined as 11f 11=[ f2(x)dx]l/2. Eq. (21) indicates

tt

that the upper bound of the norm 118-_app,. tl is simply

proportional to II t"ll/II 811, but it is related to the size of

thc domain D=[xl.x:] in a non-linear fashion.

Computational simulations indicate that e(x)am ._ is often

a shifted, rotated and sheared representation of 8(x)

although it describes the general behavior of c(x).

The difference between the true and approximate bias

error distributions 8(x) and c(X),pp,, can be reasonably

modeled by a linear function of X,pp,., that is,

8( x ) = c( x ),w -( Co + Cl X,pp_ ). (22)

The linear term serves as a correction for the approximate

solution c(x),pp_. Clearly, two standard valucs are

requircd to determinc thc constants C O and C_. Whcn

two truc values are known at two specific points, the

constants CO and C t can be determined. The linear

model (22) is able to give a reasonablc cstimate for the
bias error distribution. The approximatc refercnce value

x,q,p,, is provided by anothcr independent device with the

accuracy comparable to the tested dcvice.

As an example, consider a bias error distribution

8(x) in D = [LlOl

c( x )=O.3-O.OS.fx-8x lO-3 x 2
(23)

+ 8x 10 -5 x 4 -exp(-O.3x 2 )"

The approximatc reference value is givcn by

x,w = x + c'( x ) , where

e'( x) = A[0.2 -5x lO-_x +O.O2x e - 3x lO-S x 3

_0.5exlg_O.2x )+O.5sech(O.iSx )] (24)

The constant A in Eq. (24) is used to adjust the magnitude

of c'(x) in computational simulations. Figure 3 shows

the given bias distribution (23) and the computed
distributions for o" = 2 and N = 13 when the relative

magnitudes of c'(x) are IIc'II/11e11=0.29, 1.17, 1.7.5,

and 2.95. As indicated in Fig. 3, the computed distribution
is able to describe the behavior of the bias error

distribution 8(x) even when the accuracy of the

approximate referencc value is considerably worsc than
that of the tested devicc. Figure 4 shows the difference
bctwecn the givcn and computed bias error distributions

Il e( x ) -- C( .r )_amp II/IIc(x)II as a function of

I18'(x) II / I1e(x) II. The linear relation between

Ilc(x)-e(x),,,,_t , II/ll£(x)ll and llc'(x)ll/llc(x)ll

shown in Fig. 4 is consistent with the theoretical estimate
(21).

Thc selection of the order of the polynomial N in Eq.

(18) significantly affects the accuracy in calculation of the
bias error distribution. A polynomial having a low order

may lead to a poor fit to the true values, while a

polynomial having an excessively high order may producc
a large variancc duc to the over-fitting problem. A

question is whether there exists an optimal order of the
polynomial to achieve thc highest accuracy of calculation.
An answer to this problem is not available in a strictly
mathematical sense. Ncvcrthcless, based on computational
simulations for various bias error distributions, an

empirical rulc is proposed here for determining an

appropriate order of the polynomial. Wc dcnotc c(x,N)

as the bias error distribution calculatcd using a Nth-ordcr

polynomial and define the norm Ile(x,N+ l)-8(x,N)ll

as the distance between the bias error distributions

calculated using the (N+l)th-ordcr and Nth-ordcr

polynomials. Computational simulations show thai the
distancc l lt'( x, N + t) - 8( x, N ) II usually becomes small

in a certain range of the order N when the polynomial
correctly describes the truc bias error distribution. This

phenomenon can be clearly seen when

IIc(x,N+l)-c(x,N)ll is plotted as a function of the

order N. Figure 5 shows a typical semi-logarithmic, plot of

Ile(x,N+ l)-c(x,N)lI as a function of the order N for

4



K,

the given bias error distribution (23), indicating a
characteristic valley in a range of N = I0- [5. In this case,
a polynomial having the order in N = 10-15 can provide a
reasonable estimate for the bias error distribution.

4. Effects of Random Perturbations

In actual calibration experiments, a measurement

re(x) has the random error in addition to the bias error.

The random error affects the solution of the intrinsic

functional equation for recovering the bias error
distribution. To simulate effects of the random

perturbations, we consider a perturbed measurement

m( x )[ 1+ p( x )] , where p( x ) is a random perturbation

with the normal distribution. Monte Carlo simulations can

give the probability density distribution of the relative

difference II g(x)-e(x)ll/llt(x)ll that is a random

variable, where g(x) is the perturbed bias error

distribution calculated by using the scaling-based method.

For p(x) having the standard deviation of 0.005, the

scaling-based method with a = 2 and N = 13 is used to
recover the bias error distribution (11) for 500 samples.

Figure 6 shows the probability density distribution of the

relative difference tl g(x)-c(x)ll/tlC(.r)l[. The

expectation value of II g(x)-e(x)ll/lle(x)ll is plotted

in Fig. 7 as a function of the standard deviation of the

random perturbation p(x).

The scaling constant gr may be also changed by a

small random perturbation in certain measurements. The

randomly perturbed scaling constant is expressed as

or(l+ Pa ), where Pc. obeys the normal distribution.

When p, has the standard deviation of 0.005, the

disturbed bias error distribution g(x) is calculated by

using thc scahng-bascd method (a=2 and N = 13) for

500 samples for the given bias error distribution (11).
Figure 8 shows the resulting probability density

distribution of I1 g(x)-c(.r)ll/llc(x)ll, indicating a

roughly uniform distribution.

5. Methods for Simultaneously Estimating Bias Errors
of Two Devices

The Scaling-Based Method

In this section, wc describe the scaling-based method

for simultaneously determining the bias error distributions
of two devices. Consider devices A and B that have the

measurements

m_(X)=X+CA(x) and mR(x)=x+Ct_(x). (25)

The intrinsic functional equations for the bias error

distributions £a(x) and cz_(x) are

8gx) = eA(x)-c#x)
(26)

&_( x) = e_(x )-a-;cB(a.r)'

where 61 ( x ) = m A(x) - mt_(x) and

62(x) = m,_(x)-oe-lml_(otx) are known functions

obtained from measurements. Assume that the functions

6;(x), g2(x ), eA(x) and e/_(x) can bc expanded as a

power series in a given domain D = [x I,x 2 ], that is,

N N

V d (l)X'' = Zdl, 2 'x",61 ( x ) = z__, ,, and 82 ( x )
n=O n=O

N N
t B) .n

eA(X)-_Te(a(r " and eB(x)= z_e,, ._ . (27)
It =0 n =0

For a given set of data points of 6;(x) and 62(x), the

coefficients d_,lj and d(, 2) can bc obtained using the

least-squares method. Except for n =l, the coefficients

el,a_ and j,B) can bc determined by

.1( 2 ) _ ¢yn-l r]( I ) d_ 2 _ _ ° Ji'l(l )
_<A> ",, - -" and /B__
e. -- ]_Ot__l t, . ]--O'n- 1

(n =0,2,3...N) (28)

For n =1, since the functional equations (26) are reduced

to one independent equation, there is only a single

equation d(; '> =d; 2_ = e;A)-eCn) for two unknowns

et/a) and e_ "). To determine the remaining unknown

coefficients e(ia_ and e(i_) , we use an integral expression

N

fA)= 2 f,le'[ma( "_etA).rn
81 X_ " Is n=O., r2 x) ] dx 1 (29)

tl¢:l

and the relation e<;B) =er;a>-dr; ;). The given domain

D, =[x;,,x2._ ] (xT?.,¢.r__., ) for integration is a sub-

domain of the mcasuremcnt domain D = [ x I,x 2 ].

As discussed previously, since the true variable x is

not known a priori in practical applications, approximation
should bc used in which the true variable x is replaced by

the known approximate variable m A(x). The

approximate formulations are
N

(_l( X )apllr : Z ([/_ll i l m A ( X )] n ,

n=O

N

_2( .r ),,pp,.= _ ,ti,2_! mA( -_)1",
t1-_9

N

e.4 (X)app, = Z el'A)/m,4 (x)] 1',
1t=0

N

el; ( X )al,pr = Z `'I'B ,1 'HA ( X )] n .

rt=O

(3O)



where 8; ( X )appr = IliA ( X ) -- nl B ( X ) and

(_2(x)appr =nlA(X)-O{-InlB(anlA(X)) are known

functions. The approximate bias errors Ca(X).,pp,_ and

,f'_(x),pl, ,. can be determined by using Eqs. (28) and (29).

The approximations eA(X),pp, and C_(x),pl, r describe

the general behavior of the bias error distr_utions, but
deviate from the true ones. The linear model for correcting

CA(X),w and ct_(x),pp,, is given by

e A(X):E a(X)aPPr --[Cao +CAI H1A(X)]

CB(X)=CB(X)app r --[CBo-F-CBIItlA(X)I . (31)

When two true values are known at two specific points, the

constants CAO. CA1, Cno, and CB/ can bc determined.

Simulations indicate that Eq. (3 I) is able to describe a

class of the bias error distributions CA(X) and eB(x) that

are reasonably rep_resented by a power series. As an

example, we consider the bias error distributions cA(x)

and t:e(x) in D=[I, IO]

ea(X ) = 0.3--4× 10-2_- 2 × lO-4 x 2 --8× 10-_.r _ ,

eB(x) = 0.1--5× lO-_-f_+ 2× IO-2x 2 --3× lO-4x 3 • (32)

Figure 9 shows the givcn and calculatcd bias error

distributions CA(X) and ell(x) for o_ = 2 and N = 10.

The empirical rule for selecting the order of the

polynomials in Section 3 is also applicable to the two-
device case.

The Translation-Based Method

In a domain Do = [0,27r], the intrinsic functional

equations for thc bias errors Ca(O) and e_(O) are

6dO)=ea(O)-eR(O)
(33)

62(O )=cA(O)-eB(O+O0 ) '

where 0o is a constant translation in radian.

81( 0 ) = mA( 0)- mtd 0), and

62(O)=ma(O)-me(O+Oo)+Oo are known functions.

Assume that in D o =[0.21r] the functions 6j(O).

62(0), cA(O ) and gB(0 can beexpandedas
N

o) = / 2+ / 0)+bl, ,#,( ,,0 )/,
n=/

N

_2_ /2 + Zla_, 2 cos(nO)+bl, 2_ sin(nO)l,8:(0) = ao
i1=[

N

e,, ( 0 ) = a_a ) / 2 + E [ a_,a' cos( ,, 0 ) +b_,A, sin( ,, 0 )].
II= l

N

I1=1

(34)

#1) b_,t). _(2_ b_,2)) in 61(0) andThe coefficients (.,. , ,,, .

62(0) can bc determined using the least-squares method.

For n _:0, a relation between ( a,,tA ). bl, A) , a,, . b.

and (_.tti,,, , b_,'_ , %_(2), b,(,2_) is

(al; v b,TM u,, ta,, ,,, o,, ) ,

(n = 1,2,3...N) (35)

where

1 0 -1

G= 0 0 -cos(nOo ) -sin( nOo ) "

1 sin(nO o) -cos(nO o)

Since the determinant of G is det( G ) = 2[ 1 - cos(nO o )1.

a necessary condition for the existence of a unique solution

is nO o _ klr + rc / 2 ( k =O,l.2..-- ). For n=0,onlyone

B) is available for two(I) _ _(2) =a(A)_a 0equation ao - ao

(A) and ao . Using a similar method to theunknowns a o

pure scaling case, the coefficient a_A) can bc determined

by an integral over D o = [0,2re ]

2,'r

O(oA)=_-IS/IItA(O )

0 (36)
N

-- E [ (l _la _ COS( l10 ) + b(_A ) sin( II 0 ) ]]dO - 2x

tl=]

_B) _A) <_) is readilyTherefore, the coefficient ao =a o -a o

known. As an example, we consider the following bias

errors ea(0) and eB(0) in D o = [0.2rc]

eA(O) = 0.03+5X 10-40+O.02cos(O)+3X 10 -s cos(20 )

-- 6 X IO-S sin( 0 ) + 4 x 10 -_ sin( 30 )

Ctc( O )=O.O5 + 3x lO 40 +O.05cos( O )-6 x lO-S cos(30)

+ 10 -4 sin(O)+3x 10 -s sin(40)

(37)

Figure 10 shows a comparison between the given bias

errors and those computed by using the translation-based

method (00 = zr/35 and N = 6 ).

6. Applications
In principle, the aforementioned methods arc

applicable to any device. Here, to illustrate applications of
these methods, we present several typical examples in

w)ltagc measurements, angular measurements, and optical
measurements.

V_olta_e Calibrations for AID Converter

A vohagc divider was constructed using stable
resistors to obtain a nominal voltage ratio of 0.5 (the

scaling constant 0.5 in the scaling-based method). The
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inputto thevoltagedividerwasconnectedto a stable
voltagesourceandtheoutputwasconnectedto one
channelof a24bit multiplexingA/Dconverter(Lawson
Model201).Anotherchannelwasconnecteddirectlyto
thevoltagesource.Thevoltagesourcewasvariedfrom-
5vto+5v(thefull rangeoftheA/Dconverter).The100
readingsonbothchannelswererecorded.Noaccuracy
wasassumedforthevoltagesourceor thevoltagedivider
ratio. Calculationfor the bias error distribution was

performed by using the approximate scaling-based method.

Two reference readings were taken to provide the standard
values, one with the input shorted and another with the

input voltage set to exactly 3 volts (as measured on a

precision voltmeter (HP 3458A) of the accuracy of 8ppm).
This is all that is required to find the calibration of the A/D
converter by using the approximate scaling-based method.

Eleven additional points were taken using the precision
voltmeter (HP 3458A) over the full range to verify the

mathematical solution. The wdtagc calibration plots in
Fig. I I shows the verification points and the calibration

results computed using the scaling-based method for a" =
0.5 anti N = 15. The calibration curve computed by using
the scaling-based method is in good agreement with the
verification data.

Instead of using a voltage divider for scaling, scaling
can be achieved based on dial readings of a power supply
(Wavetek Model 220). An advantage of this approach is

that a physical,device like the divider is no longer required
for scaling. Figure II shows the bias error distribution

computed by using the scaling-based method in which
scaling is controlled based on the dial readings. Compared

with the results given by using the divider, the distribution
obtained by using the dial readings shows larger local
variations. This is because the mechanical voltage setting

device of the power supply caused abrupt w)ltage

variations over a certain range of operation. It is expected
that a more stable device will produce a smoother bias
error distribution.

Angle Calibrations for Encoder and Indexin_ Table
The two-device translation-based method was used for

angle calibration on a dividing head with attached encoder.
The secondary device was an indexing table with a

resolution of one degree. Both devices have a nominal
accuracy specification of one arc second. The axis of
rotation was horizontal so that a precision servo
accelerometer was used as an indicator of level. The

procedure involves rotating the dividing head clockwise in

10° increments, rolaling the indexer counter-clockwise in
10° increments, and reading the level as indicated by the

precision accelerometer. The second set of data, taken
with the indexer and accelerometer translated -60 degrees.
To recover the bias error distributions, the first set of data

and the second set of-60°-translated data were processed

by using the two-device translation-based method with a
4th-order Fourier series. The calibration curves for both

the encodcr and indexing table can be simultaneously

determined, as shown in Fig. 12. The black circular points

in Fig. 12 are the results of a conventional calibration

using a device with an accuracy four times better than the
dividing head with the encoder. The bias error distribution
measured by using the precision accelerometer is in good

agreement with the computed distribution for the encoder.

It is worthwhile noting that we do not explicitly use any
standard value to recover the bias error distribution.

Nevertheless, the periodicity condition O( O)= O( 2_r ),

which is automatically satisfied in the Fourier series

solution, can be considered as an imposed constraint. The
two-device translation-based method, originally proposed

by Finley [3], has been used regularly by Wylc

Laboratories to calibrate precision angle-measuring
devices in their facility and at NASA Langley.
Radial Lens Distortion

An interesting example is application of the scaling-
based method to determination of the radial lens distortion.

In reality, a lens used for imaging is not perfect and the
imperfect lens may distort an image. Thus, camera
calibration to determine the camera parameters including

the lens distortion parameters is crucial for accurate image-
based measurements [71. The most dominant lens

distortion is the radial lens distortion that is symmetric
about the principal-point (close to the geometric center of

an image). The radial lens distortion is described by a

simple model 6r = Kj r3, where 6r is a bias error in the

radial distance due to the lens distortion, K / is the radial

distortion parameter, and r is the radial distance from the

principal-point. The radial distortion parameter K 1 in

addition to other camera parameters can bc obtained in
comprehensive camera calibrations by using analytical

photogrammetric techniques. For an 8ram Computar TV
lens used in this test, an optimization camera calibration

method [7] gives K 1 = 0.001297mm -2 .

Unlike analytical photogrammetric techniques that use
a special mathematical model for the lens distortion, the
scaling-based method determines the radial lens distortion

under a general theoretical framework of the bias error.

During tests, a 22in×17in target plate with 121 retro-
reflective targets of 1/2in diameter was used to provide a

planar target field. A CCD video camera (Hitachi KP-
FlU) with an 8ram Computar TV lens, viewing
perpendicularly the target plate, was used to take images of

the plale placed at two different distances from the camera.
Figure 13 shows typical images ¢_f the target plate at two

different distances from the camera. The digitized image

has 640×480 pixels and the nominal pixel spacing is 9.9

lain in both the horizontal and vertical directions. The
centroids of the targets and the radial distances of the

targets from the geometric center in these images were
computed. Two images of the target plate at two different

distances from the camera naturally provide scaling in the
radial distance in image plane. The scaling constan!



a =0.8262 was obtained by averaging ratios between the

radial distances of the corresponding targets from the

geometric center in two images. The bias error

distribution £'(r) was calculated by using the approximate

scaling-based method when the order of the polynomial is

suitably chosen in N = 20-28. By the dcfinition of _(r),

one knows 6r(r)=-e(r). The condition 6r(O)=O

must be satisfied. Thus, only onc standard valuc is

required to detcrminc the unknown constants in Eq. (22),

which is given by the optimization camera calibration
method. Figure 14 shows the radial lens distortion
dislr_utions obtained by thc scaling-bascd method (N =

25) and the optimization camera calibration method for an

8ram Computar TV lens.

7. Conclusions

The bias error distribution of a device can be sought as
a solution of the intrinsic functional equation. Based on

this idea, the scaling- and translation-based methods have

been dcvclopcd to determine the bias error distribution in a
domain from less accurate measurements. The scaling-

based mcthod is applicable to a device whose bias error
distribution can bc adequately expressed as a power series

or a polynomial in a domain. Practical application of the
scaling-bascd method typically requires two standard
values to recover the complete bias error distribulion in the

whole domain. The suitablc ordcr of a polynomial for
accurate recovery of the bias error distribution can be

selected according to an empirical rule proposed in this
paper. Thc translation-based method, which uses a Fourier
series to describe the bias error distribution, is particularly

useful for angular measurements because of the internal

periodicity constraint. The translation-based method does
not cxpilcitiy require any standard value. Thesc methods
have been extended to simultaneously determine thc bias

error distributions for two devices. To validate and clarify

the technical aspects of these methods, computational
simulations have been carried out for various hypothetical
distributions of the bias error. LabOratory tests have been

conductcd for calibrating scveraI different devices such as
A/D converter, angular measurement device and optical
lens. Thcsc methods of estimating the bias crror

distribution are effcctivc for a variety of devices.
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Appendix: Least-Squares Estimation of the Coefficients

To determine the coefficients d,, (n=O,l,2,...N)

in the power series or polynomial 6(x) in Eq. (7) for a set

of data points x i (i= 1,2, ...M

R)r d,, (n=O, 1,2,.-.N) is

Pd=d_

where d = (¢1o dj d2... d N )r,

6=(6(x I ) 6(x2 )...6(x M ))T, and

i x, x, ...

p= x 2 x_5 x._ -.•

9 7

.rM .r_ x_4 -..

The least-squarcs solution to (A I) is

d = (pTe)-IpT_.

, a system of equations

(AI)

-,-7

IN

JtM

(A21

Similarly, a system of equations for the coefficients

( g _ bl_ _ _(a,, , • ) in the Fourier serics in Eq. (14) for a sct of

data points 8 i (i = 1,2, ...M ) is

Fa=6,

( (8)...al, _) (6_ ) .where a=_a t , bj ...b_ _ T

6 = (6(0j) 6(02)''•6(0 M ))r, and

'cos(O l )'" cos(NO/) sin( 01 )'.. sin( NO s ) )
F = cos( 02)...cos(NO 2) sin( 02)...sin(NO 2)

_cos(O M )... cos( NO M ) sin(O_l )... sin( NO_I )

The least-squares solution to (A3) is

a = (FTF)-tFT6. (A4)

(A3)
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